Persistently laminar branched surfaces
نویسنده
چکیده
We define sink marks for branched complexes and find conditions for them to determine a branched surface structure. These will be used to construct branched surfaces in knot and tangle complements. We will extend Delman’s theorem and prove that a non 2-bridge Montesinos knot K has a persistently laminar branched surface unless it is equivalent to K(1/2q1, 1/q2, 1/q3, −1) for some positive integers qi. In most cases these branched surfaces are genuine, in which case K admits no atoroidal Seifert fibered surgery. It will also be shown that there are many persistently laminar tangles.
منابع مشابه
Laminar Branched Surfaces in 3–manifolds
We define a laminar branched surface to be a branched surface satisfying the following conditions: (1) Its horizontal boundary is incompressible; (2) there is no monogon; (3) there is no Reeb component; (4) there is no sink disk (after eliminating trivial bubbles in the branched surface). The first three conditions are standard in the theory of branched surfaces, and a sink disk is a disk branc...
متن کاملInertial migration based concentration factors for suspensions of Chlorella microalgae in branched tubes.
When a dilute suspension flows in the laminar regime through a tube, under certain conditions the suspended particles migrate radially to an equilibrium radial position. Branched tubes can use this radial concentration distribution to concentrate dilute suspensions. Suspensions of microalgae, Chlorella vulgaris, were pumped through tubes of various diameters for tube Reynolds number ranging fro...
متن کاملThe Solution of Laminar Incompressible Flow Equation with Free Surfaces in Curvilinear Coordinates
In this paper a novel numerical approach is presented for solving the transient incompressible fluid flow problems with free surfaces in generalized two-dimensional curvilinear coordinate systems. Solution algorithm is a combination of implicit real-time steps and explicit pseudo-time steps. Governing fluid flow equations are discretized using a collocated finite-volume mesh. Convective terms a...
متن کاملThe Solution of Laminar Incompressible Flow Equation with Free Surfaces in Curvilinear Coordinates
In this paper a novel numerical approach is presented for solving the transient incompressible fluid flow problems with free surfaces in generalized two-dimensional curvilinear coordinate systems. Solution algorithm is a combination of implicit real-time steps and explicit pseudo-time steps. Governing fluid flow equations are discretized using a collocated finite-volume mesh. Convective terms a...
متن کاملNumerical simulation of Laminar Free Convection Heat Transfer around Isothermal Concave and Convex Body Shapes
In the present research, free convection heat transfer from isothermal concave and convex body shapes is studied numerically. The body shapes investigated here, are bi-sphere, cylinder, prolate and cylinder with hemispherical ends; besides, they have the same height over width (H/D = 2). A Numerical simulation is implemented to obtain heat transfer and fluid flow from all of the geometries in a...
متن کامل